
CPS311 Lecture: CPU Implementation: The Registers, ALU and Data Paths

Last revised October 23, 2019
Objectives:

1. To show how a  CPU is constructed out of a clock, register set/ALU/datapaths 
and a control unit.

2. To discuss typical components of the register set/ALU/datapaths
3. To show how a mips-like machine could actually be implemented using digital 

logic components already seen

 Materials: 

1. Projectable of overall block diagram of CPU
2. Projectable of Block Diagram - Single-Cycle Implementation modified to 

exclude details of memory, operation control, and RTL
3. Projectables of

a. A typical bit of a register
b. Implementation of an output of the register set
c. Implementation of decoder for enables for register set
d. Implementation of a typical bit of the ALU

4. Java Single Cycle MIPS implementation simulation
5. Programs for the above

a. Double, then add 1, to memory location 1000
b. Delayed branch demo

6. Circuit Sandbox simulations  
a. One bit of a register  
b. Four bit register  
c. Register set  
d. ALU Bit 
e. 4-bit ALU  
f. Four bit register with 2 inputs

7. Java Multicycle MIPS implementation simulation
8. Programs for the above

a. Add 1 to memory location 1000
b. Machine language code for Lab 5 Part I

9. Handout: RTL for multicycle MIPS implementation
10.Handout with assembly language and machine language versions for multicycle 

programs  

�1



I. Introduction

A.For the last several weeks, we have been focussing on computer architecture.  
Today (and in fact for the rest of the course) we turn out attention to computer 
organization.  What is the difference in meaning between these two terms?  
 

ASK  

1. Computer architecture refers to the functional characteristics of the 
computer system at the ISA level, as seen by the assembly/machine 
language programmer (or the compiler that generates assembly/machine 
language code), as the case may be. 

2. Computer organization refers to the physical implementation of an ISA.

3. Historically, significant architectures have had numerous 
implementations, often over a period of decades.

a) IBM mainframe architecture - first developed with System 360 in mid 1960’s 
- still being used (with modifications) in machines manufactured today.

b) DEC PDP-8 architecture - first developed in late 1960’s - last 
implementation in 1990.  (Went from minicomputer with CPU realized 
as discrete chips to microprocessor).

c) IBM/Motorola PowerPC architecture (the chip once used in 
Macintoshes and once (still?) used in CISCO routers, many video 
game consoles and TV set-top boxes) - first developed in mid 1990’s, 
still utilized today.  (The most recent version, the G5, represents the 
5th generation of this architecture.   The G5 is a 64-bit chip that fully 
implements the 32 bit architecture with 64-bit extensions Each 
generation has had multiple implementations.)

d) Intel IA32 architecture - first used in 80386 family in mid-1980’s; the 
64-bit chips used in virtually all PCs are still backwards compatible 
with this architecture.   (Often known as x86) 

B. Of course, a complete computer system consists of a CPU, Memory, and IO 
facilities - possibly all on the same chip in embedded systems, or on multiple 
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chips.  For a while, we will focus on the CPU - we will address memory and 
IO later.  In early computers. the CPU was built up out of multiple discrete 
components, but today the CPU is a single chip.  However, we will look at 
the internals of the CPU in terms of digital devices we have discussed earlier 
such as gates, flip flops, multiplexers etc - realizing that today these are all 
realized on a single chip.

C. To try to develop in any detail the implementation of a contemporary CPU is 
way beyond the scope of this course - and also way beyond the scope of my 
knowledge, in part because manufacturers don’t publish all the details about 
their implementations - for obvious reasons!  Instead, we will focus on some 
hypothetical implementations of a subset of the MIPS ISA - which is 
relatively simple, and for which published information actually is available.

1. It should be understood from the outset that the implementations presented here 
are definitely NOT  the structure of an actual MIPS implementation.

2. For pedagogical reasons, the two implementations presented in this 
lecture are quite different from the way MIPS is actually implemented.  
(One we will present later in the course is much closer to the actual 
implementation, but is still much simpler.) 

3. The implementations we will present does not support a number of 
features of the MIPS ISA - though these could be added at the cost of 
additional complexity.

(a)The hi and lo registers, and multiply and divide instructions.

(b)Support for coprocessors, including floating point instructions.

(c)Kernel-level functionality, including interrupt/exception handling.

(d)The distinction between signed and unsigned arithmetic - we will do 
all arithmetic as signed.

(e)Byte and halfword operations.
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4. The implementations we will present do not include some efficiency “tricks”.

D.To understand CPU implementations, we make use of a fundamental 
principle in computer science: the notion of levels of abstractions.  

1. In essence, what this means is that we can look at any given system at 
several different levels.  Each level provides a family of primitive 
operations at that level, which are typically implemented by a set of 
primitive operations at the next level down.

2. Today, we will be doing this at the hardware level.  Earlier in the course 
we saw, for example, how a JK flip flop could be viewed as an abstraction 
having a certain transition table etc. - but that abstraction an be realized, 
in turn, by a network of gates, each of which can be realized by patterns 
deposited on a silicon chip (or relays, or tinker toys!)  

E. A CPU can be regarded as having the following overall structure:  
 

�  
 

PROJECT 

1. The portion on the right contains the visible registers that an assembly/
machine language programmer sees - e.g. the PC and 32 general registers 
in MIPS.  It also contains an arithmetic-logic unit and data paths that 
perform required operations on the registers - e.g. adding two registers.  
This portion will be our focus in this lecture and the next.

CPU
Clock

Control Unit Datapaths 
(registers, ALU, 
connections)

Control Signals
(called the
control word)

To/from 
Memory and IO
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2. The clock generates a regular series of pulses that synchronize state 
changes in the registers.  Its output looks like this:  
 

�  
 
or perhaps this: 
 

�

a) The frequency of the clock dictates the overall speed of the system.   

(1)For example, if a computer is reported to use a CPU with a 2 GHz 
clock, it means that there are 2 billion clock cycles per second - so 
each cycle takes 1/2 nanosecond.

(2)The maximum clock frequency possible for a given system is 
dictated by the propagation delays of the gates comprising it.  It 
must be possible for a signal to propagate down the most time-
consuming path in not more than one clock cycle.

(3)Most systems are engineered conservatively, in the sense that the 
clock frequency is actually slightly slower than what might actually 
be possible.  This allows for variations in component manufacture, 
etc.  It also leads to the possibility of overclocking a given CPU as a 
(somewhat risky) performance-improvement “trick”. 

one cycle

one cycle
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b) The various registers comprising the system are synchronized to the 
clock in such a way that all state changes take place simultaneously, on 
one of the edges of the clock.  
 
In the examples we will be developing, we will assume that all state 
changes take place on the falling edge of the clock.  (It would also be 
possible to design a system in which state changes take place on the 
rising edge of the clock.)  
 
In some systems (including most mips implementations), while most 
state transitions take place on one edge, there are some transitions that 
occur on the other edge.  This allows certain operations to be allocated 
1/2 a cycle of time.  (But more on this later - for now we ignore this 
possibility.)

3. The control unit generates control signals that control the operations 
taking place in the datapaths.

a) This includes things like signals that control what computation the 
ALU does (add, subtract, and, or ...); load enables to the registers that 
determine whether a register will change state on the next clock pulse, 
etc.

b) The set of control signals, together, is sometimes called the control 
word. 

c) A new control word is generated prior to each clock pulse, specifying 
what operations are to be performed on that clock pulse.

d) We will consider the implementation of the control unit portion of the 
CPU in a subsequence series of lectures.  

�6



II.The Registers, ALU, and Datapaths

A.This portion of the CPU includes the circuitry for performing arithmetic, and 
logic operations, plus the user visible register set and special registers that 
connect to the Memory and IO systems.   The actual structure of this part of 
the CPU as physically implemented is usually not identical to that implied by 
the ISA.

1. The actual physical structure that is implemented is called the 
microarchitecture.

2. The microarchitecture must, of course, include components that 
correspond to the various parts of the system that appear in the ISA (e.,g. 
the registers).  We call this the architectural state.

3. The microarchitecture usually includes registers that do not appear in the 
ISA.   We call these the non-architectural state.

4. An ISA might have various specialized registers, but the 
microarchitecture might utilize general registers which are mapped to the 
various special functions in the ISA.

5. It is common today to find CPU’s that have a CISC ISA being 
implemented by a RISC microarchitecture (RISC core)   We will not, 
however, pursue this topic since things can get quite complex!

B. The following is a block diagram of the Datapaths for the single-cycle MIPS 
simulated implementation we will be discussing today.  
 
PROJECT Block Diagram for MIPs Single Cycle Implementation
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�

1. In this simulation, there is a one-to-one correspondence between most of 
the components of the architectural state and components in the 
microarchitecture.  

a) The Register Set (lower left corner) holds the 32 general registers 
visible to the assembly/machine language programmer or the compiler.

b) The ALU (upper left corner) performs various primitive operations on 
32-bit values - e.g. add, subtract, and, or ...

c) The Program Counter (PC) is a 32-bit register that holds the address of 
the next instruction.

2. The Instruction Register (IR) holds the instruction currently being 
executed.  It is part of the non-architectural state, since it is not directly 
visible in the ISA (and another implementation may handle it differently.)  
It is utilized by the control unit to determine what operations need to be 

�8



performed,  but also provides some information to the ALU, such as 
constants used for I and J format instructions.  

a) At the beginning of a cycle, the IR will hold the instruction being 
executed on that cycle.

b) At the end of a cycle - when the register updates called for by that 
instruction are done - the IR itself will be updated to hold the next 
instruction.

3. The Memory is shown because data flows to/from it from the portion we 
are focussing on.  It has to have two ports - one for data and one for 
instructions - since on each cycle it fetches an instruction and in many 
cases it may also need to read or write data - hence the two addresses 
coming in from the PC and ALU, two data lines going out to the IR (for 
instructions) and the register set (for reads), and one data line coming in 
from the register set (for writes).

4. The lines connecting the various components are data paths along which 
data can flow from one component to another.

a) In most cases, they are 32 bits wide, drawn as a single line.

b) They are always one-way (note the arrow heads).

c) In the simulation, they are shown in red if the are currently active, and 
black if they are not.

5. The small rectangles below the register set,  ALU, and PC are MUXes that 
allow one of several inputs to be selected (as specified by the control unit.)  
(The line in the MUX indicates which source of input is currently selected.).   
 
The small "+" and "*" boxes feeding into the MUXes are adders or 
multipliers (left shift two places).  The boxes labeled "extend" are sign 
extenders - converting a 16 bit value into 32 bits by replicating the sign of 
the 16 bit value into the bits of the upper half.
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a) The register set can receive data either from the ALU or memory - the 
MUX determines which.  It receives data from the ALU when 
performing an R-Type operation such as add, and from memory when 
performing a load operation.

b) The ALU receives two inputs.  

(1)One can come either from the register set or from the PC.  The 
former is used for most operations, with the latter being used just 
when executing the JAL instruction (which copies the PC into a 
general register).

(2)The other can come either from the register set, or from the 
constant field of the current instruction.  In the latter case, it may or 
may be sign-extended (extended for operations like add; not 
extended for operations like and).

c) The PC holds the address of the next instruction, and is updated as this 
instruction is fetched.  It can receive either 4 added to its current value, 
(most instructions) or 4 * the I constant of the current instruction 
added to its current value (branch instructions) or the J field of the 
current instruction (Jump and JAL).

C. Implementation of Individual Registers.

1. A 32-bit register - such as the ones in the Register Set, the PC and the IR - 
can be realized using 32 combinations of a flip flop and a 2-way MUXs - 
one for each bit.  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�  
 
PROJECT 
 

DEMO Circuit Sandbox - Single Register bit (Clear using bottom button 
to start run)  

2. Data in connects to the data path going into the register, and data out to 
the data path going out of the register.

3. All the register flip flops (over 1000 of them) are connected to the clock. 

4. Thus, all the flip flops load a value on each clock.  However, the MUX at the 
input can arrange for this to either be a copy of the current value (hence no 
change) or an input coming in.  The load enables for all the flip flops in a given 
register are connected together - when it is 0, the register retains it value; when 
1, the register loads a new value from the 32-bit input data path.  
 

DEMO: Circuit Sandbox - 4 bit register.  (Run program from copy in Circuit 
Sandbox Demos folder to get special component.  Operation is controlled by 
three switches on top: 000 = and, 001 = or, 010 = xor, 011 = nor, 111 = add)

D.Implementation of the register set.

1. The register set contains 32 registers, each composed of 32 flip-flop/MUX 
pairs - (except for $0, where all of the bits can simply be 0)

2. The register set furnishes three outputs - two to the ALU and one to 
memory - controlled, respectively, by the rs, rt, and rt fields of the current 
instruction.  Each output can be realized by 32 MUXes, each with 32 data 
inputs and 5 selection inputs.  

D QMUX

Data in

Load Enable

Data out

Clock
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For example, the left most (rs) output may look like this  
 
 
 
 
 
 
 
 
 
 
 
PROJECT 

3. The corresponding data inputs of each register may be connected to the 
data input to the register set - e.g. bit 31 of each of the registers ($1..$31) 
may all be connected to data input bit 31, etc.

4. The enables of each register may be connected to a 1 out of 32 decoder 
that selects which bit gets loaded based on a 5 bit value (either the rt or rd 
field of the current instruction.) - e.g.  
 

�  

PROJECT

Overall
enable

 

to enables of all bits of
$31 $30 $29 $28 ............. $3  $2  $1  (NC)

One out of 32 decoder

rt or rd field IR
(depends on opcode)
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rs field
of IR

output 
bit 31

$31 $30  ... $1 0
(bit 31 of each)

output 
bit 30

$31 $30  ... $1 0
(bit 30 of each)

output 
bit 1

$31 $30  ... $1 0
(bit 1 of each)

output 
bit 0

$31 $30  ... $1 0
(bit 0 of each)

...



5. Thus, the operation of the register set is controlled by the rs, rt, and rd 
fields of the current instruction plus a single load-enable bit of the control 
word! 
 
CIRCUIT SANDBOX MODEL register set (2 4-bit registers)  
 
 

 
 

E. The ALU of MIPS performs one of 10 different operations on two 32 bit 
input values to produce a 32 bit result - with some additional variations for 
the shifts.   It might implemented by 32 copies of a circuit consisting of a 
MUX plus appropriate gates/gate networks for each function.  
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Data in
(4 bits)

A' / B Load

Load enable

A'/B output



1. The ALU needs to be capable of performing the following operations  
 

Output ← A + B 
Output ← 1 if A < B (slt)  
Output ← A & B  
Output ← A | B 
Output ← A ^ B  
Output ← B << 16 
Output ← A (B ignored)  
Output controlled by funct field of IR

2. Thus, a typical bit (replicated 32 times) might look like this:  
 

 
PROJECT

�  
 
DEMO: Circuit Sandbox simultations of ALU Bit and 4-bit ALU

...

Output

+
to 
next

from
previous
bit

Inputs

MUX
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F. A typical bit of the PC could be implemented like this:  
 

�  
PROJECT 
DEMO Circuit Sandbox Simulation of a register with 2 inputs

1. Adding + 4 is achieved by hard-wiring the second input of bit 2 of the 
adder to be 1, and all others to be 0.

2. Scaling of constants from the IR is done by shifting - e.g. bit 0 from the IR 
goes to the MUX/flip flop for bit 2, bit 1 from the IR goes to bit 3, etc.  
Bits 0 and 1 always receive 0.  For j/jal, bits 31..28 receive the bit in the 
corresponding position in the PC, since the constant is 26 bits shifted left 
two places to produce a 28 bit constant.

3. The adders for PC+4 and adding the I constant receive carry from the 
previous bit and pass carry to the next bit, indicated by the arrows going 
into and out of the adders.

4. Actually, since the PC must always contain a multiple of 4, it is not 
necessary to implement the two low order bits as flip-flops; they can 
simply be hardwired to 0.

1 out of 4
 MUX

Flip-Flop with
parallel load 
capability

Load enable
From
IR J 
Constant

PC Source selection 
(2 bits)

(See 
discussion)

Address
to memory
system

From
IR I
Constant
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5. In this implementation, the PC is loaded on every cycle, so no load 
enable is needed (or it is hardwired to 1).

G. Implementation of the IR is straightforward - it is just a simple register, with 
the inputs connected to the memory, the outputs controlling various 
functions - and going to the control unit - and the load enable always 1, since 
the first step in executing an instruction is fetching it!  (Which, in this 
simulation, is actually done at the end of executing the previous instruction.)

H. We have now seen that every component of the datapaths portion of the CPU 
could be built up from components we are already familiar with - flip flops, 
multiplexers, decoders, and simple gates.  

1. In the earliest days, each of these components had to be built up out of 
basic electronic components such as vacuum tubes or transistors.  CPU's 
implemented this way might fill a room!

2. Later, CPU's were built up out of individual chips like the ones you've 
used in lab - each containing one or two flip flops, or multiplexes, etc.  At 
this point, a CPU might fill one or more circuit boards.

3. Today, CPU's are implemented on a single chip - which means that each 
of the component parts is implemented in an area on the chip. But even 
though you cannot see the individual pieces, they're still there.

I. As we have noted, the components are connected by data lines and MUXes.   

III.Controlling the Operation of the Data Paths

A. In our discussion of how the various parts of the data portion of the CPU are built, 
we've noted that the specific operations performed are controlled by various bits 
of the control word.  Let's pull these all together.  It turns out that we need just 14 
control bits to control everything - all based on the content of the IR!

1. 2  bits to control the updating of the PC (PC + 4, branch, or jump) - one 
possibility unused.
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2. 2 bits to control reading from or writing data to memory (these actually 
go to the memory system, not what we have just been discussing.)

3. 1 bit to control the left source to the ALU (register specified by rs or PC)

4. 2 bits to control the right source to the ALU (register specified by rt or 
immediate constant or sign-extended immediate constant) - one 
possibility unused.

5. 3 bits to determine the operation performed in the ALU along with the 
funct field in the instruction.  (For the immediate instructions, the funct 
field in the instruction is actually part of the constant.)

6. 1 bit to control whether a new value is loaded into a register in the 
register set.

7. 1 bit to control where this new value comes from (if one is being loaded) 
- the output of the ALU or memory.

8. 2 bits to control which register is loaded (determined by rd field of 
instruction, determined by the rt field,  or register 31 (required for JAL))  

B. Recall the notion of hierarchies of abstraction.  At this point, we can describe 
what is happening using a level of abstraction called the Register-Transfer 
Level.  This level has the following characteristics:

1. The primitive operations at this level are called microoperations

2. Each microoperation is directly realized by hardware, and can be carried 
out in a single clock cycle.

3. Each machine-language level instruction in the ISA is realized by a series 
of microoperations. 

a) Some of these may be done in parallel if they use disjoint hardware 
components
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b) But most will need to be done sequentially, resulting in several clock 
cycles being used to implement the operation from the ISA.

4. An RTL operation is described by an expression of the form  
 

destination ← source  
 

which indicates that, on the clock pulse, the source value is copied into 
the destination.  

a) The source may be

(1)A register

(2)Some simple combinatorial operation performed on two registers - 
e.g. bitwise &, |, ^; add or subtract.  (But not multiply or divide)

(3)A memory cell.  (Often abbreviated as M[x], where x is the source 
of the address)  
 

NOTE: Actual access to a cell in memory may take 100’s of clock 
cycles.  However, as we will see later in the course, the memory 
system is configured to allow most accesses to be done in one clock 
cycle.  Thus, a microoperation involving a memory cell may be 
done in one clock, or may result in the CPU being stalled until it 
can be completed.  

b) The destination may be

(1)A register

(2)A memory cell (same notation and caveats as above).

5. Sometimes a microoperation is done on just part of a register.  In this 
case, the specific bits are indicated in parentheses after the register name - 
e.g.  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someReg(0) ← 0  
someReg(7..0) ← someOtherReg(15..8)

6. Associated with each RTL operation is a control signal that determines 
whether or not that operation is performed on a particular clock.  This 
may be denoted by  
 

signal name : operation  
 

which indicates that the operation is performed just when the control 
signal in question is true

7. If two or more microoperations involve disjoint sets of hardware 
components, they can be done in parallel on the same clock.  This is quite 
common in CPU hardware.  This is denoted by writing the two 
microoperations on the same line, separated by a comma - e.g.  
 
IR ← M[PC], PC ← PC + 4

C. We can now see how the data portion of the CPU we have just described can 
actually implement machine-language operations in the ISA.

1. First demo: Consider a a single instruction, which adds the contents of 
registers 5  and 6 and puts the result in register 4:  
 

add $4, $5, $6  
 

000000 00101 00110 00100 00000 100000  
0x00a62020  
 

DEMO: Put the instruction in memory location 0, be sure the PC is 0, set 
$4 in 0, set $5 to 1, set $6 to 2  
Discuss RTL and data paths  
Set Visible Delays on, Clock and watch run, then look at $4

2. Now let’s consider a simple program: Add 1 to the value stored in memory cell 
1000 and then write it back.  
 
Obviously, this is a far from interesting (or useful) program - but it will allow 
us to see how a series of machine instructions are executed by hardware.  
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a) This could be realized by the following program.  (It ends with a nop 
to mark the end of the program after the last instruction has been 
executed.)  
 
lw $2, 1000($0)  
addi $2, 1  
sw $2, 1000($0)  

b) In machine language, this is realized by the following code:  
 

PROJECT Add 1 to memory location 1000

c) DEMO Execution, walking through RTL and enabled data paths at 
each step - then show final result.

D. This implementation does have one idiosyncrasy.  Consider the execution of 
a conditional branch or jump instruction.

1. The PC always contains the address of the next instruction - which during 
the execution of a branch/jump will be the address of the next word in 
memory, not the target of the branch or jump, since the PC is updated at 
the same time the IR is.

2. At the next clock tick, the PC will be updated to the target address calculated by 
the branch/jump instruction, but since the IR and PC are both updated in 
parallel, the IR will load the word just after the instruction - not the branch 
target.  As a result the instruction just after the branch/jump will always be 
executed before we being executing at the target address.

3. DEMO: Program consisting of a single "branch to self" infinite loop 
followed by an addi $1, 1.   

a) Show Program.
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b) Step through the final loop several times and note how $2 changes 
each time through.  (When run with the Single Cycle implementation, 
needs to be clocked once initially to load the IR the first time)

 

c) Let it run.

4. This phenomenon is called delayed branch.  Since the single cycle 
simulation we have done thus far is not the way MIPs is actually 
implemented, this is a non-issue at this time.  But it will reappear when 
we get to the pipelined implementation that actually is used!  (And it can 
be dealt with fairly easily - we'll discuss later.)

IV.Multi-Cycle Implementation

A. Though the implementation just developed works reasonably well for MIPs, 
there are serious practical issues that arise in many cases.

1. Timing issues  

a) Recall that physical devices need some amount of time for performing an 
operation - therefore, there is a finite delay between the time the input to a 
device changes and the time the output of the device is correct.

b) Since the input of an operation is often the output of the previous 
operation, clock rate is limited by the time needed for all the 
operations in a sequence to be executed.  Since the clock rate is not 
dependent on what instruction is being executed, the limit turns out to 
be the longest time for any instruction.  
 

MIPS Example: An lw instruction performs the following operations, 
each of which depends on the result of the one just before.  
 

Add register specified by IR and constant in IR in ALU  
Fetch data from memory from address specified by ALU output  
Store value fetched into a register  
 
 
 
 
 

�21



DEMO: Simulation with delay injected.  (Start from pc = 0 and IR = 0 
and just step - first clock will load first real instruction and do nothing 
else since nop)

c) While this is not a major issue with MIPs since all instructions 
encounter similar logic delays, it can be a significant issue for 
architectures where instruction times vary widely - e.g. on a machine 
having multiply as a regular instruction a multiply takes much longer 
than an add.

2. Multiple use of functional units issues

a) On MIPs, the data memory and ALU are used just once per 
instruction.   

b) But some machines may use these units more than once on some 
instructions.  
 
Example; A one-address machine using an address mode like 
displacement mode on an add instruction may use the ALU once to 
calculate the address and again to perform the addition.  
 
Example: A one-address machine doing an addition on an operands 
memory may need to read, then modify, then write a location in 
memory.  
 
Example: A two-address machine doing an addition may need to read 
two operands, perform a computation, and then write the result.

3. Instructions that contain loops.  
 
Example: The x86 architecture includes several instructions that operate 
on character strings, such as copying or comparing them.  These 
instructions perform a single computation for each character in the 
string(s) involved - with the number of computations needed being 
dependent on the length of the string.
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B. To address issues like this, it is possible to break an instruction into smaller 
steps, and execute the instruction as a series of individual steps.  This uses 
multiple clock cycles - but if the steps are made small enough, the overall 
time (number of steps * clock length) can be comparable to single cycle time 
for short instructions, and can easily vary from instruction to instruction so 
that some instructions complete in fewer cycles than others.

C. Consider a MIPs implementation using this idea.  Again, this is not the way 
MIPs is actually implemented, but it will help us understand how it actually 
is!

1. Each instruction will use exactly 4 cycles:

a) Fetch the instruction from memory and - at the same time - add 4 to 
the PC

b) Decode and get needed ALU operands and - at the same time in the 
case of a jump/branch instruction - update the PC to the target address.  
 

To make this work, we'll need two input registers for the ALU to hold 
the operands for the next step.

c) Perform ALU operation.  
 

To make this work, we'll need an output register for the ALU to hold 
the result for the next step.

d) One of the following

(1)Store computed result into a register

(2)Read from memory location specified by computed result and put value 
read into a register  
 
(Note: this combines two steps from the example in the book, since only 
one type of instruction needs two steps here - so I "fudged" a bit!)
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(3)Write a register into memory location specified by the computed 
result

2. This multi cycle implementation addresses issues with the single cycle 
implementation we addressed early.

a) The issue of delayed branch goes away, since branch/jump 
instructions update the PC on cycle 2 while the next instruction is not 
read until cycle 1 of the next set.  (But this issue will come back when 
we get to the actual pipelined implementation!)

b) A multiport memory is no longer needed, since instruction read occurs 
on cycle 1 and data read/write on cycle 3.  (But this issue will also 
come back when we get to the actual pipelined implementation!)

c) Since each of the 4 cycles takes about the same amount of time, the 
overall time for 4 cycles is similar to the time for a single cycle in the 
single cycle implementation (which had to allow time for all the steps 
in a single cycle.)

d) Multiple uses of functional units and loops are not issues with the 
MIPS ISA.  If we used this approach with a CISC, we could re-use 
functional units on different cycles and could allow instructions to 
take varying numbers of cycles.  (E.g. each loop iteration of a string 
instruction could be its own cycle.)

3. Let's see how this works for an actual instruction  
 
Example: Add the contents of registers 5  and 6 and puts the result in 
register 4: 
 
sub $4, $5, $6  
 
000000 00101 00110 00100 00000 000000  
0x00a62022  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DEMO (using Multi-Cycle implementation set to manual control)  

a) Load machine language into location 0; initialize $4 to 0, $5 to 1, $6 to 
2, and PC to 0

b) Ask class to develop RTL for each step - demo each in turn  
 
IR <- M[PC], PC <- PC + 4  
ALUInputA <- register[rs], ALUInputB <- register[rt]  
ALUOutput <- ALUInputA func ALUInputB  
(note how simulation shows function as -)  
register[rd]<- ALUOutput

D.Handout complete RTL for Multi-Cycle MIPS Implementation; then go 
through

E. Two more demos.  In these cases, we will let the control words be generated 
automatically using the Control unit which we will discuss next

1. The following adds 1 to the contents of memory cell 0x1000:  
 
lw $2, 0x1000($0)  
addi $2, $2, 1  
sw $2, 0x1000($0)  
 
This corresponds to the following machine-language program:  
 
8c021000  
20420001  
ac021000  
 
HANDOUT 
 
DEMO: Load program, examine memory location 1000; step through 
execution using hardwired control.  

2. We will now execute the machine language program developed for Part I 
of Lab 5 on our simulators.  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HANDOUT 
 
DEMO: Load, execute with initial value in $4 = 3.   
 
* Note that each program terminates with “dummy instruction”   
- b . which produces an infinite loop.  In our second example, this would 
be our jr if we had a main program as in lab.  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